Algebraic Groups I. Dynamic approach to algebraic groups
ثبت نشده
چکیده
Let G be a smooth affine group over a field k, and λ : Gm → G a k-homomorphism (possibly trivial, though that case is not interesting). One often calls λ a 1-parameter k-subgroup of G, even when kerλ 6= 1. Such a homomorphism defines a left action of Gm on G via the functorial procedure t.g = λ(t)gλ(t)−1 for g ∈ G(R) and t ∈ R× for any k-algebra R. In lecture we introduced the following associated subgroup functors of G: for any k-algebra R,
منابع مشابه
Weak approximation, Brauer and R-equivalence in algebraic groups over arithmetical fields
We prove some new relations between weak approximation and some rational equivalence relations (Brauer and R-equivalence) in algebraic groups over arithmetical fields. By using weak approximation and local global approach, we compute completely the group of Brauer equivalence classes of connected linear algebraic groups over number fields, and also completely compute the group of R-equivalence ...
متن کاملSemisimple Algebraic Groups in Characteristic Zero
It is shown that the classification theorems for semisimple algebraic groups in characteristic zero can be derived quite simply and naturally from the corresponding theorems for Lie algebras by using a little of the theory of tensor categories. This article is extracted from Milne 2007. Introduction The classical approach to classifying the semisimple algebraic groups over C (see Borel 1975, §1...
متن کاملAffine Difference Algebraic Groups
The central objects of study in this thesis are affine difference algebraic groups. Similar to the case of affine algebraic groups, these groups can all be realized as subgroups of some general linear group defined by algebraic difference equations. However, the defining equations here are not simply polynomials in the matrix entries but difference polynomials, i.e., the defining equations invo...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملAlgebraic Groups over Arbitrary Fields
In this chapter, we study algebraic groups, especially nonsplit reductive groups, over arbitrary fields. The algebraic groups over a field k that become isomorphic to a fixed algebraic group over kal are classified by a certain cohomology group. In the first section, we explain this, and discuss what is known about the cohomology groups. Over an algebraically closed field, the classical semisim...
متن کامل